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1 Overview of Research and Results

JPL missions are constantly evolving, increasing the demands imposed on critical software
systems and applications. This ambition requires more modern, flexible, reusable, and
extensible component-based software that does not abandon the production applications
required for success. Resolving this problem is vital to the future of software integration with
mission planning at JPL.

In this report a general software design methodology is presented for modernization of legacy
scientific and engineering applications. This technique leverages the existing investment in
production codes while infusing modern software engineering principles. Furthermore,
various classes of mission flight software throughout JPL, such as flight, data, and analysis
systems software, will be discussed to determine how our technology could benefit such
systems.

These ideas have been successfully applied to the Modeling and Analysis for Controlled
Optical Systems (MACOS) software important to the Next Generation Space Telescope
(NGST), Space Interferometry Mission (SIM), and other projects. MACOS, developed at
JPL, provides tools for analysis of optical systems, model generation, and modeling for
system-level design and analysis tasks.

The modernized software has been delivered to the MACOS project. Also discussions were
held with members of the Mission Data System (MDS) project to determine how legacy
software issues may affect their goal of redesigning how spacecraft are conceived, designed,
launched, and controlled. To learn more about the software tools becoming available for
modernization we visited Boeing Phantom Works for a technical interchange. Boeing has
applied the use of automatically generated software wrappers to help new software interact
with legacy software for embedded flight systems. We have also identified other tools in the
market that may assist in partial automation of our methodology. In addition, meetings with
the Navigation and Flight Mechanics Section have prompted new work involving modernizing
their Mars navigation software.

Finally, aspects of our work have been presented at the Workshop on OpenMP Applications
and Tools Conference held at the San Diego Supercomputing Center, Lawrence Livermore
National Laboratory, Boeing Phantom Works, Navigation Software Development Group
(312), and the JPL IT Leadership Council. Also, a paper we submitted on modernization
techniques for legacy scientific software has been accepted for oral presentation at the
Conference on Computational Physics 2000.

This report summarizes our activities under the CMISSS Software Engineering Technology

Work Area. A more detailed tutorial guide on our modernization techniques will be presented
in a separate publication.
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2 Modernizing Scientific Software

Legacy software has great value since it is generally well debugged, produces results that are
trusted, and is actively meeting end-user goals. The amount of hidden expert knowledge
embedded in such software can be significant making its preservation important.
Nevertheless, legacy software has limitations. It can be difficult to extend, modify, and it does
not support collaborative development very well. This can impede the ability to meet new
and expanded mission goals as timelines and budgets become tighter. One approach to this
problem is to rewrite the software from scratch, but this may introduce more serious costs. In
particular, developing new verification and validation tests can be expensive. Also, ensuring
that the legacy code was faithfully rewritten, regardless of the programming language applied,
cannot always be guaranteed.

Generally, if the functionality of the legacy software is sound, it can be wrapped in a modern
interface where the original code is mostly unmodified. The idea of wrapping code means that
the original legacy software is preserved while a new layer of software is introduced to
separate the old software from the new software. The wrapper provides the best means of
retaining the functionality of the legacy software investment while providing a more flexible
context from which new software, based on modern concepts, can be introduced.

There are many benefits to this approach:

1. Software remains in productive use while applications are modernized.

2. Avoids costly and potentially harmful software rewrites.

3. Promotes collaborative development while resolving organization problems exhibited
in older codes.

4. Re-engineering occurs more quickly than rewriting, while preserving verification and
validation tests, especially when the original programmers are involved.

5. Old bugs are uncovered.

Extending the functionality of legacy systems has become more important as modern
applications increase in complexity and require the interaction of multiple contributors.

2.1 The Technology Applied

We have found that Fortran 90/95 has new features to support object-oriented principles
beneficial for scientific programming and introduce a design methodology that defines a step-
by-step process to modernize legacy application codes using state-of-the art software
practices. While we emphasize Fortran applications, due to the abundance of Fortran legacy
codes, similar techniques can be applied to software written in other domain-specific or
general-purpose languages, including C or C++. As such, existing flight-related software is not
excluded from modernization.

Our process begins by upgrading the existing Fortran application to standard conforming
Fortran 90/95. Next, interfaces to the original application routines are introduced to add
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safety features by detecting common programming errors. These interfaces ensure that the
wrapper layer, added next, always correctly calls the legacy code. This wrapper layer allows
problem based object abstractions to be introduced that interact cleanly with the legacy code,
while supporting new enhancements. It also preserves the original, mostly unmodified, legacy
software. The user can communicate with the modernized code across these layers and
continuous development can occur simultaneously among these layers. The figure below
shows the general approach

Object/Abstraction Layer

—
r
r

‘" Wrapper/Interface Layer '
o . On-going

Software

Legacy Development

Software and Suppo

2.2 Fortran 90/95 Features that Modernize Programming

Many new features in the Fortran 90/95 standard provide benefits that are unfamiliar to
experienced Fortran 77 software engineers. These features add safety, simplify complex
operations, and allow software to be organized in a logically related way. Since backward
compatibility is preserved one can incrementally make modifications while preserving existing
work. Briefly, some of these new features are:

Modules Encapsulates (groups together) data, routines, and type declarations
while providing accessibility across program units.

MODULE module_name
implicit none

save

1 constant and variable declarations..
CONTAINS

I member subroutines and functions..
END MODULE
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Use-Association Controls access to module content across program units.

PROGRAM program_name
use module_ name
implicit none
I program content..

END program_name

Interfaces Verifies that the argument types in the procedure call match the types in
the procedure declaration.

PROGRAM program_name
implicit none
interface
subroutine foo(argl, arg2)
real, dimension(10,10) :: argl
logical :: arg2
end subroutine
end interface
END program_name

Derived Types  User-defined types that support abstractions in programming. The
creation of these types allows one to support problem domain based
design.

TYPE new_type
integer :: component_1
real :-: component_2
END TYPE new_type

Array Syntax This syntax simplifies whole array, and array subset, operations.

integer, dimension(100) :: X, y, z
X =y *z I Fortran 90/95 style..
do 1 =1, 100 I Fortran 77 style..
x(1) = y(i) * z(i)
end do
Dynamics Various kinds of dynamic structures are supported including allocatable

arrays and pointers.
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real, dimension(:), allocatable, save :: h

real, dimension(:), pointer :: p, Q
allocate(h(10), p(10)) I Perform runtime allocation..
q-=07p 1 Refer to dynamic variable..

A very powerful realization is that combining these ideas allows support for object-oriented
concepts. There are a number of textbooks on Fortran 90. One that we recommend is
“Fortran 90 Programming”, by Ellis, Philips, and Lahey, Addison Wesley, 1994.

2.3 The Emergence of Software Tools

As the importance of re-engineering becomes more widespread companies have been more
active in tool development. While our re-engineering process is not automatic it is largely
mechanical so some aspects of our approach could benefit from software tools. Some
companies claim to have tools that perform modernization from Fortran 77 to Fortran 90/95
automatically. An example is Simulog’s Foresys tool (http://www.simulog.fr/iforef.htm).
Unfortunately, such tools can restructure in a difficult to comprehend manner (variable names
are changed), do not add abstraction, and often leave software in a form nearly impossible to
modify or extend.

Scitools” Understand for FORTRAN (http://www.scitools.com/uf.html) “is an interactive
development environment (IDE) tool providing reverse engineering, automatic documentation,
metrics and cross referencing of FORTRAN source code.... [It helps you] reverse engineer
and understand large amounts of legacy FORTRAN source code.... It also includes numerous
graphical reverse engineering views designed to help you understand and assess changes you
are considering in your code”.

Pacific-Sierra Research (http://www.psrv.com/vast77t090.html) offers VAST/77to90 that
allows you to “Automatically move your older Fortran programs to the new standard, with
many features and options. COMMONSs are replaced with MODULEs, loops with array
syntax, fixed format with free format, GOTOs with new structured control statements, and
much more.”

Honeywell has a tool called called DOME (http://www.htc.honeywell.com/dome/) that “is an
extensible system for graphically developing, analyzing and transforming models of systems
and software”. This tool is used as part of Boeing’s Incremental Upgrade of Legacy Systems
project that will be described later.

Quibus Enterprises offers Forwarn (http://www.fortran.com/quibus_forwarn.html) that “is a
static analyzer and documentation generator for Fortran programs. It speeds program
development and debugging, improves reliability and portability, and helps reverse
engineering. Forwarn does for Fortran what Lint does for C, and also documents routine and
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variable usage. Forwarn can check for common coding errors, print cross-reference listings,
and print a calling tree diagram”.

3 Step-by-Step Process for Legacy Software Modernization

In this section we describe the process that one can follow to modernize legacy software.
This process has been successfully applied and it defines a plan of action for such projects.

y A A
Standard-Based Undesirable Features
Legacy Software Compilation Common Blocks
A

Standard Compliant Implicit Variables
Legacy Software Include Statements
Etc...

Components and OO Add New Capabilities Create Interfaces
Group Related Dynamic Memory Argument Checking
Abstractions Interoperability with Wrappers to Preserve
Integrate with Larger Other Software Legacy Code
Projects Etc... Etc...

The diagram shows the fundamental stages involved. While we focus on Fortran legacy codes
the same stages could be modified for software written in other languages. Many of the
specific actions taken will also depend on the code structure and objectives.

3.1 Clearly Identify the Objectives

It is very important to have a conversation with the software owners to determine their
objectives. The flowchart of the modernization process may help guide this discussion.

3.2 Understand the Legacy Software

Understanding, even at a basic level, how the legacy software is organized is valuable. While it
is possible to perform the modernization without detailed knowledge of the application,
knowing the design is very helpful. Here are some common questions that should be asked.

» Isthis a stand-alone code or is additional software required?

» Isthis a single language code or a multilanguage code?

* What platforms are required?

* Who is responsible for answering questions if legacy bugs are detected?

» What kind of obsolete features exist in the software?

» Are any third-party developers involved and is their software proprietary?
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3.3 Standard-Based Compilation

This stage involves recompilation of the application with a modern compiler. This finds
errors that were previously undetected, identifies extensions that are not part of the standard,
and resolves other issues. These may include implicit and/or duplicated variables and use of
non-standard routines and constructs. If the software relies on pre-compiled binaries where
the original source code is not available then it is important to verify that these binaries will
link with the recompiled legacy code. This can often be the case if the legacy code depends on
libraries for graphical output, mathematics, or other features. In general, however, these
libraries can also be recompiled as part of this process. During this stage all compiler reported
errors should be corrected before moving forward.

Many applications on UNIX systems rely on “make”, a utility that reduces the compilation
steps for programs consisting of many files to a single command. Since Fortran 90/95 has
more features than Fortran 77 additional information must be provided during the compilation
process when these features are used. For example, Fortran 90/95 compilers generate .mod
files that are similar in nature to .0 object files, but actually are quite different. It may be
necessary to tell the compiler where these files are generated so be certain to check the
options provided by your specific compiler. In many cases this takes the form:

90 sources.f90 —-M<_mod_directory>
where the —M option specifies the directory where these temporary .mod files exist.
At this stage the legacy code is being modified. For this reason, and for the following stages,

some form of version control is recommended. One popular system is the Concurrent
Versions System (CVS) (http://www.cvshome.org/).

3.4 Addressing Undesirable Features

One of the most undesirable features in legacy Fortran 77 codes are COMMON blocks since
they often inhibit more advanced features, like dynamic memory. They also discourage code
sharing since everything is exposed. For this reason, modifying large common blocks can also
be intimidating since inadvertent errors are easy to introduce. Other undesirable features
include implicitly declared variables, which are dangerous, and include statements that are
platform dependent based on how directories are specified.

Common blocks can be handled by placing the specification in a Fortran 90/95 module.
Furthermore, rather than using include to make a textual substitution, the module
information can become accessible using the Fortran 90/95 use statement in the appropriate
routines.
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I Original COMMON Block in common.inc
real argl1(10,10), arg2(10,10)

logical arg3

integer arg4

COMMON /BLOCK1/ argl,arg2,arg3,arg4
SAVE /BLOCK1/

subroutine foo() I Defined in some file..
include ’common.inc’

énd

I Modernized Version in common.f

MODULE common_blockl
implicit none

save
real, dimension(10,10) :: argl, arg2
logical :: arg3
integer :: arg4

END MODULE common_blockl

subroutine foo() I Defined in some file..
use common_blockl

end subroutine foo

The structure of the replacement is straightforward. One could have simply copied the
original common block from common.inc into a module exactly, but using the Fortran 90/95
constructs gives additional advantages. These include the ability to make the block members
dynamic and the ability to add more functionality to the module by making other modules
visible within its scope, to name a few.

Other important issues to consider are free-format versus fixed-format program structure and
naming conventions. Most legacy Fortran 77 codes use a fixed-format style. This is
supported by Fortran 90/95 compilers but we recommend using free-format style wherever
possible to increase readability. When creating new files as part of the modernization process
(creating common block modules for example) free format should be used. When making
modifications to existing legacy files (replacing include of common blocks with use of
modules) fixed-format may be preserved. Compilers support options that allow fixed-format
and free-format files to be used in the same executable.

Choosing a convention for general purpose naming and formatting is important as new

modules and files are created in the modernizing software. The previous example shows how
the legacy names are mapped into the modified names.
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Variables that are created implicitly can introduce bugs that are very hard to detect and
correct so we recommend that implicit none be specified so that all data is declared
before it is used. This allows the compiler to report improperly declared variables.

3.5 Creating Interfaces

Interfaces are very important, as they add safety to the modernized software. They allow the
compiler to verify consistent argument usage for procedures, which allows subtle errors to be
detected and corrected in legacy codes.

Interfaces are created automatically for routines that are defined within modules, but we are
currently interested in building interfaces for the legacy routines that will not be moved into
modules at this time. Not every legacy routine requires an interface, but all of the routines
accessible from the main program should have an interface. Furthermore, any routines in the
scope of the main program that have arguments that will be dynamic will require an interface.

The 1nterface statement is used to declare the procedure name and the types of its
arguments. Since this is a Fortran 90/95 construct that will tie in the legacy code to the
modernized code a new Fortran 90/95 interface.f file can be created to declare the Fortran 77
legacy interfaces. These interfaces can be placed in a module that in turn may use other
modules, such as the common block modules recently created.

I Interface Module in interface.f

MODULE interface_module
USE common_blockl
implicit none
save
interface
subroutine foof77(argl, arg2, diml)
real argl(diml,diml)
integer diml
logical arg2
end subroutine
end interface
END MODULE interface_module

Note that the interface has exactly the same declaration as the original Fortran 77 legacy
procedure, in fact it is best to just copy it explicitly. This means that when the legacy routine
is called additional checks will be performed to ensure that the number and types of the
arguments match exactly.

It may look like very little has been gained, but the benefit of the interface becomes clear

when it is combined with a wrapper that allows more powerful Fortran 90/95 features to be
applied. For example, many Fortran 77 programs have very long argument lists because extra
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information must be included, such as the dimension of arrays. Since Fortran 90/95 arrays
know their size these arguments do not need to be included in a wrapper function that calls
the original legacy procedure.

I Interface Module iIn interface.f

MODULE 1interface_module

USE common_blockl

implicit none

save

interface
subroutine foof77(argl, arg2, diml)
real argl(diml,diml)
integer diml
logical arg2
end subroutine

end interface

CONTAINS
subroutine foof90(argl, arg2) I Wrapper
real, dimension(:,:) :: argl
logical :: arg2
call foof77(argl, size(argl,l), arg2) I Legacy

end subroutine foof90
END MODULE interface _module

This is a simple example, but the effect can be significant for very complex procedures. In
fact, more functionality (such as dynamic memory) can be applied at this level using the
wrapper while preserving the original legacy software. Furthermore, this can be achieved
without a serious performance penalty when the legacy routine is non-trivial.

The interfaces can also clarify how Fortran 77 style arguments are sometimes passed to
procedures. For example, it is not uncommon to find Fortran 77 programs that pass a two-
dimensional array to a procedure that expects a one-dimensional array. This can cause
compile errors when interfaces are used because they require that the arguments must match
exactly. In such instances it is possible to create multiple interfaces to recognize this
difference using a generic procedure to allow a single name to select the correct module
procedure based on the argument list.
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I Interface Module iIn interface.f

MODULE interface_module

USE common_blockl

implicit none

save

interface
subroutine foof77(argl, arg2) ! Legacy Interface
real, argl(*), arg2(*)
end subroutine

end interface

interface w_foof90 I Generic Wrapper
module procedure foof90 1, foof90 2
end interface

CONTAINS

I Two identical arguments..
subroutine foof90_1(argl, arg2)
real, dimension(:) :: argl, arg2
call foof77(argl, arg2) I Legacy
end subroutine foof90_1

I Two different arguments..
subroutine foof90_2(argl, arg2)

real, dimension(:) :: argl
real, dimension(:,:) :: arg2
call foof77(argl, arg2) I Legacy

end subroutine foof90_2
END MODULE interface module

In the example above, calling the generic procedure w_foof90 will refer to foof90 1 if
both arguments are one-dimensional arrays and to foof90_2 if argl is a one-dimensional
array and arg2 is a two-dimensional array. Note that the original foof77 legacy procedure
has not been modified.

3.6 Adding New Capabilities

Now that the interfaces have been created and wrappers have been introduced to encapsulate
the legacy software new capabilities can be added. For most legacy software the most
desirable feature is dynamic memory. Fortran 90/95 supports many kinds of allocatable
structures and they are straightforward to use. Dynamic memory increases the flexibility of
the software since this frees the application user from fixed problem sizes. Interoperability
with more modern software can also be achieved since the wrappers can be designed to utilize
such applications. These new capabilities can be added without affecting the use of existing
systems.
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I Legacy Fortran 77 include file of static COMMON data

parameter (mdttl=128)

integer neElt, RaylD(mdttl,mdttl),
COMMON /EIltInt/ nElt, RaylD,..
SAVE /EltIint/

I New Module for COMMON data

MODULE elt_common
implicit none

save

integer :: nElt, mdttl = 128

integer, allocatable, dimension(:,:) :: RaylD
CONTAINS

1 Constructor
subroutine new_elt_common()
allocate( RaylD(mdttl,mdttl) )
end subroutine new_elt _common
END MODULE elt_common

I Dynamic allocation from main program

PROGRAM example
use elt_common
implicit none
call new_elt_common()

END PROGRAM example

The example above shows a legacy Fortran 77 common block with static data can be
reorganized to support dynamic memory. This occurs by moving the common block into a
module and specifying which structures will be dynamic. A constructor can be created to
perform the allocation of the dynamic structure and this constructor can be called from the
main program. A number of additional safety features such as checking if the structure was
already allocated, handling of exceptional conditions like insufficient memory, and so forth
can be added as well.

3.7 Moving toward Components and Object-Oriented Design

Fortran 90/95 contains derived types, like structures in C, which allow users to create their
own types. This allows one to program using designs that better represent the problem
domain. One of the major benefits of the methodology is that one can incrementally evolve
the legacy code toward such a design while preserving the functionality of the legacy
software. An object-oriented design allows the implementation details to change without
affecting the user. In a sense, the interfaces and wrappers have hidden the details of the legacy
software, but we can enhance the wrappers to support derived types evolving the code
toward an object-oriented, component-based, design.
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I Creating derived types for object-based design

type species
real, dimension(:,:), pointer :: coords
real :: charge_to_mass, kinetic_energy
end type species

I Using a legacy routine through an 00 wrapper

subroutine w_push(particles, force, dt)
type (species) :: particle
real, dimension(:) :: force
real :: dt, gbm, wke
integer :: ndim, nparticle, nx
ndim = size(particle®%coordinates,?2)
nx = size(force)
qbm particle®%charge to mass
wke particle%kinetic_energy
call push(particle%coords, force, gbm, wke, ndim,
nparticle, nx, dt)
end subroutine w_push

This example shows a legacy push(...) routine, wrapped by a Fortran 90/95 w_push(...),
routine that uses a derived type to group together related information. This was not possible
in Fortran 77 so long complicated argument lists were required. The species type has a
dynamic component, and other information, which simplifies the programmer’s view of the
data. Nevertheless, the original legacy software can still provide the functionality required.

I Creating classes for object-based design

MODULE plasma_class
I Create Derived Types..

CONTAINS
subroutine new_species(..) ! Constructor..
subroutine w_push(..) I Class Members..

END MODULE plasma_class

In fact, a class can be created which groups together operations common to the new species
type where the class member routines utilize legacy software internally. New software can be
added to the class as well. This is a very powerful concept, but careful planning is always
required when building an object-oriented design.

Once the classes have been designed, and tested, the modules can be incorporated into the
main program and calls to the member routines can replace calls to the original legacy
software. Since interfaces for the legacy software still exist this process can be incremental,
the software still works at the end of the day, and development can continue during the
modernization process allowing existing objectives to be satisfied.
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4 MACOS Case Study

The Modeling and Analysis for Controlled Optical Systems (MACOS) software is an
important NASA code that has been used for numerous projects. This software, developed
by Dr. David Redding and others from the Optical Systems Modeling Group (385), provides

powerful optical analysis tools and a unique capability for system-level design and analysis
tasks. MACOS has many features, but a short list includes:

» Modeling optics on dynamic structures, deformable optics, and controlled optics
» Efficient general ray-trace capabilities

» Integrated support with other tools to create an end-to-end instrument system model

Layout, ¥Z Mane, Flle=etorlghtid
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MACQOS is written primarily in Fortran 77 and it interoperates with Matlab, PGPIot, and
FFTw. There is also a subroutine library called SMACOS based on MACOS. Previous
efforts to rewrite the software completely in C++ (to meet new objectives) were abandoned
primarily because the new code did not perform as desired, and the designers are more fluent
in Fortran.

The objectives of the designers were to achieve Fortran 90/95 standard compliance, dynamic
memory support, and to hopefully have some subtle bugs corrected during the process.
Reorganization for an object-oriented design was also of interest, but not a near-term
requirement as more capabilities were being added to MACOS and SMACQOS during the
modernization process. It was important that the software remain in use during this effort.

4.1 Legacy Software Characteristics

MACOS and SMACOS version 2.8 is distributed across approximately 60 files consisting of
nearly 67,200 lines of Fortran code (mainly Fortran 77). The software uses FFTw for Fourier
Transforms and Matlab for visualization and as a calling program for SMACOS. There are
approximately 765 procedures in the source code. It is well organized and runs under UNIX
on Sun workstations as well as the Apple Macintosh. Most of the software was developed at
JPL, but some features have been added by other organizations. It has been used to win
numerous JPL flight projects. The primary developers were available and willing to respond
to questions and issues during the modernization process, but they were not involved in the
programming.

4.2 Modernized Software Characteristics

The modernized software added approximately 3,500 additional lines of Fortran 90/95 to the
legacy code. Migrating to a Fortran 90/95 standard compliant version consisted of removing
the machine specific byte data type that was no longer used and resolving issues detected by
the compiler, such as improper type declarations, but these were minor. Most of the new
code consisted of wrappers and interfaces created to preserve the legacy routines accessible
from the main program. About 28 new wrappers/interfaces also allowed for dynamic memory
to be added.

10 new modules were formed, mainly to replace existing common blocks. These modules
were used about 540 times in subroutines, and other modules, to replace common block
include statements. Additional changes were made to the Matlab configuration files so that
the Fortran 90/95 version of SMACOS would function properly. The PGPLOT plotting
package was also recompiled.

In addition to adding the new features requested there were also opportunities to replace
obsolete legacy features. These included inconsistent types in argument passing to
procedures, the use of common for temporary storage, and removal of non-portable code.
There were very few legacy bugs, but they did cause system dependent problems at times.
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The process found cases of inconsistent character lengths passed among procedures and
instances where the names in declarations and the associated arguments to procedures did not
match.

We spent about 1/2 a work year on the modernization, but we estimate that it could have
been completed 2 to 3 times more quickly if the original authors were more directly involved.
A significant amount of time was spent becoming familiar with the design and organization of
the application. The process improved the software and it always produced the proper result
at the end of the day. The incremental approach of the methodology was very beneficial since
detailed understanding of the application itself was not required to meet the project
objectives.

5 Analysis of Selected Flight Software

Part of our work involved investigating various mission flight, data, and analysis systems
projects to determine the importance of legacy software issues in meeting project goals. We
held meetings with representatives of the Mission Data System project, Boeing Phantom
Works, the Navigation and Flight Mechanics Section (Peter Breckheimer), and the Mission
Software Systems Section (Roger Lee).

5.1 Mission Data System

The Mission Data System (MDS) is an effort to introduce improved software that moves
away from mission specific products to ones where software reuse and collaboration across
the entire mission development cycle are emphasized. During our discussions with Bob
Rasmussen and Dan Dvorak we learned that much of the MDS legacy software is written in
C while new software development is primarily in C++ and JAVA. The project, at this time,
consists of a few hundred thousand lines of code, but much more is expected. The main
interest in preserving software would be for the ground systems software. We also learned
that a software modernization effort was underway in the Navigation Group.

They wanted to know if our efforts were limited to scientific/numerical codes and/or
necessarily Fortran legacy codes. Although our best experience is in that area the
methodology is not language specific. They consider the ability to update a code
incrementally important, including the ability to transfer this knowledge to developers.

We also met with Bob Toaz who was very much interested in the work, but it was not
directly applicable to him since he is more involved in science data processing for MDS. He
did mention that there are a number of legacy issues related to linking the newer flight
software to the ground legacy software.

Rick Borgen also gave his views on modernization issues and legacy software related to

MDS. He described how issues with MDS involve an interaction between new design,
support of legacy systems, and development support for large systems. He is very
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experienced with issues related to the ground systems and cataloging. We had an informal
discussion on the topic of software development for large systems and the issues one must
consider when designing a new approach. For MDS this involves developing new software
from scratch using C++/JAVA and also supporting systems developed in C and other
languages. An important part of maintaining such systems is to have automated regression
testing since, as code is modified, it can be difficult for developers to feel confident in the
changes that occur. When considering the lifecycle of development from excitement with large
funds at the start of a project, moving toward ultimate support by one person who is not
completely familiar with the project, having a testing system that validates changes removes
the fear of breaking the code. Ultimately, people are hesitant about modifying large projects
because of the fear that the software may become unusable.

With MDS, some aspects of development are so new that preserving legacy systems is not
useful. In other areas, such as the ground system, preservation is very important. For the
ground system the idea of interfaces is useful since it allows the new communications
systems on the spacecraft, and at the end-user, to work within the legacy ground system. For
instance, in existing spacecraft the telemetry data is an almost instantaneous view but in
future systems smart objects can be queried for more sophisticated information like “what
occurred over the last day”. Sending this information over the ground system may be very
different from the way it appears when it is created and received.

In Rick’s experience with MDS there are clearly areas where legacy issues have importance
and where they do not. Also, there are times where one must just accept what exists and
ensure that it can be used successfully without complaint. For example, if the processor on
the spacecraft is not very sophisticated (perhaps it is radiation hardened) it is generally not
possible to change it after launch. The expertise with this processor must be maintained even
though one may wish something more advanced was available.

5.2 Boeing Phantom Works

Boeing Phantom Works in St. Louis has an Incremental Upgrade of Legacy Systems (IULS)
Program, developed under the U.S. Air Force, that uses a wrapping technique to combine
legacy and new avionics software for embedded platforms. As part of their “Bold Stroke”
program they are trying to develop a tool set for automated wrapper development for legacy
systems. The legacy codes are written primarily in Ada, Assembly language, CMS (used by
Navy computing systems) and Jovial (a Fortran-like military language for embedded
software). There is also development in C and C++. Their tool has been demonstrated both in
the laboratory and in flight on the F15E fighter’s Overload Warning System. This system
consists of about 250,000 lines of legacy Ada code while the upgraded flight software was
generated in C++. Another laboratory demonstration rehosted the C-17 communications
control unit software from a legacy military standard processor to a commercial processor
where the legacy Jovial software was never modified. Dr. David Corman is head of the IULS
project which began in 1996.
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Boeing faces many of the same concerns that we have identified and they recognize the
benefits of wrapping legacy software. The issues of importance to them are the following:

* New engineers are unfamiliar with the old software

* Moving toward reusable components is desirable

» The need to reduce risk from re-engineering is critical

* The legacy software is tested and certified

» Upgrading software, incrementally, without a complete re-engineering effort

Additional goals are migration of their codes toward open system architectures and moving
toward a common framework for plug-and-play design in new architectures. The underlying
legacy software continues to evolve and their primary wrapper toolset is based on producing
C++ code.

Boeing collaborated with Honeywell in the development of a domain engineering tool called
WrapidH. This is a graphical tool supporting automated wrapper development for legacy
software. The user graphically inputs the legacy software and develops a new architecture
specifying data relationships among the legacy and modern code. The key feature of the tool,
in our opinion, is the ability to construct interfaces within the software for data transfer.
When the interfaces are specified accurately this allows a library of reusable parts to be
defined. One goal of the tool is to extend it toward the development of reusable components.
WrapidH runs on PC/Windows and NT environments. Honeywell was the lead developer and
General Dynamics played a large role in the documentation effort. This process is largely, but
not completely, automated.

There are three general approaches used in the IULS wrapper strategy:
Rehost Recompilation and driver fixes are applied when a processor is upgraded.

Hybrid Some legacy functionality is retained and new software is used as needed. The
wrapper acts as a bridge between the old and new systems.

Emulate The old instruction set is emulated on a new processor since the original
software function is stable and may not change.

The wrapper can be multilingual and the may add new functionality. They have even used
wrappers to set up run-time environments for legacy systems. The IULS team consists of 2-
3 people and a number of subcontractors.

In the future, Boeing wants to transition their toolset to different Air Force programs. They
expect that software rewrites could be reduced from years to months. Also, as they transition
to open architectures they expect that a common set of software could be moved easily
among many kinds of aircraft. Boeing recently agreed to release the user manual for WrapidH
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to JPL allowing us to gain a better understanding of how their technology works. They are
very interested in endorsement of their software and technology transfer.

5.3 Navigation and Flight Mechanics (Section 312)

The Navigation Software Development Group has decided to transition their software from
Sftran/Fortran 77 to Fortran 90/95. Although their original motivation was Hewlett-Packard’s
phasing out of support for Fortran 77 they now see an opportunity to re-engineering aspects
of their software. At Peter Breckheimer’s (312) request, Viktor Decyk (385), Jack Hatfield
(368), Charles Norton (385), and Van Snyder (327) gave a two-day seminar on the new
features of Fortran 90/95 that support better organization and safety for large scale
programming.

This group supports a number of projects and has concerns about meeting deadlines and
ensuring that the accuracy/functionality of their application is preserved, especially if the
software is completely rewritten. Much of our conversation and seminar focused on how
legacy software can be preserved, while new functionality can be added, based on our
modernization methodology. The seminar was also educational since we focused on the most
appropriate new features in Fortran 90/95 that should help the software engineers get through
personal study using textbooks more quickly.

The software under consideration consists of over 6 million lines of Fortran, where a large
portion is generated by the Sftran/Fortran 77 tool. There is an interest in moving away from
this tool since another tool supports conversion from Sftran/Fortran 77 to Fortran 90, but it
could use further evaluation. The key concerns of this group are the ability to have tools
available to help with the re-engineering, to ensure that they can always meet mission
deadlines, and to preserve the detailed knowledge specific to their application. For these
reasons, they find our methodology as a potential benefit so we expect to pursue a
relationship with this group.

5.4 Mission Software Systems (Section 369)

Roger Lee (369) gave an overview of a project involving modernization of DSN ground
software led by Laverne Hall (369), who is in his section. The technology regarding the
sensitivity limits of the antennas is near optimal, but the software developed for this was
written many years ago. New programming methods, and even languages, exist and this opens
the opportunity for new functionality to be added to this system.

Speaking in general about the opportunities for software modernization around JPL we
discussed how advances in spacecraft processors are driving new opportunities to perform
more onboard processing. For some projects, including parts of MDS, this implies that
rewriting may be more beneficial than preserving some legacy software since it is designed for
processors of lesser functionality. He also mentioned that Elaine Shell of GSFC is involved in
software modernization efforts and that she was another potential source of information.
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6 Experiences and Comments

Our interaction with CSMISS allowed us to validate our methodology, and it has even
promoted new work. The new MACOS software has been successfully delivered and the
project is now interested in pursuing new directions. This includes adding object-oriented
concepts and added enhancements. We expect to apply this methodology to the navigation
software as they transition from the legacy software to their next generation software.

We did not use any software tools in applying our methodology; everything was done by
hand. At this point, we will examine various tools that could be useful for partial automation
of this methodology.

Legacy software still has great value, but extending that functionality has become more
important. Modern applications require greater complexity and support for multiple authors.
More flexible design and dynamic features are also beneficial. Our methodology allows a
modern superstructure to be erected around a legacy code where data abstraction and
information hiding help to limit exposure of unnecessary details. Furthermore, modern
software features, combined with improvements in compilers, help to reduce inadvertent
errors. Applying wrappers to protect legacy software allows one to extend the functionality
of that software. The re-engineering methodology’s cost effectiveness, speed, and ability to
protect one’s investment in the experience and knowledge embedded within legacy software
should be beneficial to a variety of mission software projects.

20 September 15, 2000



